
EUROPEAN COMMISSION

ICT Challenge 6: Mobility, environmental sustainability and energy efficiency
INFORMATION SOCIETY TECHNOLOGIES

Unit G5 - ICT for the Environment

Project Acronym

SmartHouse/SmartGrid
Project Full Title

Smart Houses Interacting with Smart Grids to achieve next-generation
energy efficiency and sustainability

Proposal/Contract No: EU FP7-ICT-2007-2 STREP 224628

Deliverable D2.1
In-house Architecture and Interface Description

– Update –

Status: Final

Version:

Dissemination Level: PUBLIC

Date: 22.12.2009

Organization Name of the Lead Contractor for this Deliverable: IWES

In-house architecture and interface description

2/66

Status Description
Scheduled
completion
date1:

30.11.2009
Actual completion
date2: 22.12.2009

Short document
description:

This document reports on in-house architecture and interface description of all
automatic energy management devices used in the tree field trials.

Authors: Koen Kok (ECN), Cor Warmer (ECN), David Nestle (IWES), Gerd Heusel (IWES), Jan
Ringelstein (IWES), Patrick Selzam (IWES), Heiko Waldschmidt (IWES), Anke Weidlich
(SAP), Stamatis Karnouskos (SAP), Aris Dimeas (ICCS-NTUA), Stefan Drenkard (MVV))

 Partner SAP
 IWES
 MVV
 ECN
 ICCS-NTUA
 PPC

Report/deliverable classification:
 Deliverable
 Activity Report

 Peer review
s

 C
ontributions

Peer review approval : Approved
Rejected (improve as specified hereunder)

Date:

Suggested
improvements:

1 As defined in the DoW
2 Scheduled date for approval

X

X

X
X

X x
X

In-house architecture and interface description

3/66

Table of Contents

ABBREVIATIONS .. 5

1. INTRODUCTION AND OVERVIEW .. 6

1.1. IN-HOUSE ARCHITECTURE OVERVIEW .. 6
1.2. IN-HOUSE ARCHITECTURE DESIGN APPROACH... 6
1.3. CONCEPT AND STANDARDS OF WEB SERVICES .. 8

1.3.1. Overview of Integration .. 8
1.3.2. In-House Device Interaction ... 9
1.3.3. Enterprise Integration Architecture ...11
1.3.4. Gateway and Service Mediator ..12
1.3.5. Device Profile for Web Services (DPWS) ...13

2. IN-HOUSE SERVICE DEFINITIONS ..14

2.1. MODELLING OF RESOURCE TYPES ..14
2.2. SERVICES OF THE RESOURCE ADMINISTRATION OF THE FRAMEWORK ...16
2.3. SERVICES OF THE PERSISTENT STORAGE ..17
2.4. LOGGING SERVICES...20
2.5. SERVICES OF THE USER WEB INTERFACE ...21
2.6. RUNTIME CONTROL OF APPLICATIONS AND COMMUNICATIONS SYSTEMS ...22
2.7. SERVICES OF A COMMUNICATION SYSTEM ...23
2.8. SECURITY ..23

3. IN-HOUSE DEVICE MODELS ...24

3.1. SYSTEM RESOURCE TYPES ...25
3.1.1. Reference Types ...25
3.1.2. System Types ..25

3.2. COMMON ELEMENTS ..26
3.3. WHITE GOODS ..28
3.4. CENTRAL DATA ..30
3.5. HEATING, VENTILATION AND COOLING CONSUMPTION DEVICES ...31
3.6. GENERATION DEVICES..34
3.7. METERING DATA ..35
3.8. FORECAST DATA...36
3.9. ENERGY MANAGEMENT PARAMETERS ...37

4. DEVELOPMENT OF AN OPEN STANDARD AND REFERENCE IMPLEMENTATION FOR IN-
HOUSE SERVICES ..38

ANNEX: DETAILED DESCRIPTION OF IN-HOUSE SERVICES ...40

1. SERVICES OF THE RESOURCE ADMINISTRATION ..40

1.1. MANAGEMENT OF RESOURCE TYPES ..40
1.2. MANAGEMENT OF RESOURCES ...41
1.3. SEARCH FOR RESOURCES ..44
1.4. READ / WRITE OF RESOURCES ...45
1.5. MANAGEMENT OF COMMUNICATION SYSTEMS ..48
1.6. MANAGEMENT OF RESOURCE DEMAND OF APPLICATIONS ..49

In-house architecture and interface description

4/66

2. PERSISTENT STORAGE ..50

2.1. PREFERENCES ...50
2.2. SCHEDULES ...56
2.3. TIME SERIES ..58

3. COMMUNICATION SYSTEM...62

List of Figures

Figure 1: In-house framework overview .. 8
Figure 2: Service interaction of the SmartHouse with external entities .. 8
Figure 3: Device Peer-To-Peer interaction in the SmartHouse .. 9
Figure 4: Enterprise assisted device interaction in the SmartHouse (see Figure 6 for details)10
Figure 5: Smart meter and device collaboration beyond billing ..10
Figure 6: Enterprise Integration Architecture..11
Figure 7: The gateway and (service) mediator concepts ...13
Figure 8: Dynamic discovery of DPWS devices in Windows Vista ...13
Figure 9: Asset management and direct device information via DPWS ..14

In-house architecture and interface description

5/66

Abbreviations

AMI Advanced Metering Infrastructure

AMR Advanced Metering Reading

ASCII American Standard Code for Information Interchange

BEMI Bi-directional Energy Management Interface

BEMI GW Bi-directional Energy Management Interface Gateway

BPEL Business Process Execution Language

CHP Combined Heat and Power plant

CRM Customer Relationship Management

DPWS Devices Profile for Web Services

DSO Distribution System Operator

ERP Enterprise Resource Planning

HTML HyperText Markup Language

IEC International Electrotechnical Commission

IP Internet Protocol

IPv6 Internet Protocol Version 6

IT Information Technologies

KNX Konnex(-standard)

MMS Manufacturing Messaging Specification

OASIS Organization for the Advancement of Structured Information Standards

OSGi Open Services Gateway initiative

P2P Peer-to-Peer

PDA Personal Digital Assistant

RAM Random-Access Memory

RFID Radio Frequency Identification

SCM Supply Chain Management

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOC State of Charge

SSL Secure Sockets Layer

TLS Transport Layer Security

UDP User Datagram Protocol

WS Web Service

WS-DD Web Services Discovery and Web Services Devices Profile

In-house architecture and interface description

6/66

1. Introduction and Overview

1.1. In-House Architecture Overview

Deliverable D1.2 “Technology Trends” already provide an overview of the in-house technology required. In
general, the in-house architecture consists of:

One or several communication/home automation systems such as KNX, ZigBee, Z-Wave, etc.

Intelligent nodes/agents that perform communication and control operations over these communication
systems. In some cases, these nodes just perform basic control functions such as temperature
surveillance or switching commands from the home automation systems, in other cases (such as the
PowerMatcher concept), each node is a real intelligent agent.

In most cases, a dedicated communication gateway to the outside world exists. In concepts such as
BEMI, the communication gateway is at the same time the in-house manager, in other concepts it is just a
communication gateway without higher control capabilities than other agents in the house.

Several devices operated by the customer and measurement nodes. In general, the meter can be
considered a measurement node though having a special role for most business cases.

User Interface

It is a goal of the SmartHouse/SmartGrid system to enable automatic identification of home appliances. To
make this possible, several services for registration, management and access of devices and other
hardware/software resources available in the house have to be defined (see Chapter 2). Also, standardized
data representations of household appliances relevant to smart grids have to be developed (see Chapter 3).
For each communication system it must be determined individually how these data models can be used and
implemented. It is described how these models are transmitted and used by Web Services (for home
automation and internal services of embedded systems, Web Services might – as of today – not be well
suited; for this reason, the field implementations use various subsets of the services and data models
described here, based on technologies such as Java, OSGi3 and the .Net framework).

1.2. In-House Architecture Design Approach

The main goals for the design of the in-house architecture are:

to provide an environment for applications in the area of energy management and energy efficiency at
customers‘ sites in smart distribution grids,

to allow for access to devices and other hardware functionalities that are connected to the system via
standardized data models or device service models,

to allow for automated registration of new devices based on standardized data models and device
services,

to make the data provided from outside the BEMI that might be relevant to various applications (such as
the price of electricity) accessible based on standardized data models,

to define standardized services of the framework for using these data models and device services, and

to also provide standardized services for functionality that will be needed for many applications: the
user web interface, persistent storage of certain types of data and logging.

From these goals, several architectural elements of the framework have been identified and defined (see also
Figure 1):

3 OSGi Alliance http://www.osgi.org/

http://www.osgi.org/

In-house architecture and interface description

7/66

Application

An Application is a piece of software that is able to run in the environment of the in-house framework. In
contrast to a communication system driver, it is not used to enable the physical connection to hardware.
Applications represent certain use cases and should be specific to a use case.

Resource

A Resource is a representation of states, parameters or other data generated outside the system. So a
Resource can either represent a physical device, a communication system and its parameters/state or data
transmitted to the system from a control station, such as a price profile.

Resource Type

A Resource Type is a model definition for resources. In order to enable automated device identification and
plug&play, standardized resource types have to be used on all framework implementations. However, it
shall be possible to add new Resource Types to a framework when standardized types are available. In an
object oriented perspective, this is the class description of which the resources are instances.

Communication System

A Communication System is able to connect the data representation of a Resource with the actual physical
device it represents or with the external data source (e.g. the control station delivering the price profile). In
this way, the information of the physical connection of each resource is made transparent to the rest of the
framework as it is processed solely by the Communication System. Each connection links one data element
of a resource to an address of a communication system. The addressing scheme of each Communication
System is specific to each Communication System, of course.

APIService

The framework needs to offer several functionalities to the Applications and Communication Systems. These
services can be grouped into the administration of Resources (Resource Administration), the administration
of Applications, the system time they are using and the way they are executed (Time Control), services for
persistent storage of preferences data of Applications and of data structures that are commonly needed by
applications in the area of energy management and efficiency (Persistent Storage), access to a user interface
and services for logging and evaluation of text log messages as well as of measurement data series. The
APIService is the entity of all modules of services of the framework. Further services available to
Applications and Communication Systems can be provided by Applications, but the services of the
APIService can be expected on every framework implementation, thus being a base set for interoperability.

In-house architecture and interface description

8/66

APIService

User interface
control

Applications

Administra tion
Interface

Price- based
Management

Devices (represented as Resources)

Freezer Micro-
CHP

Electricity
Price

Communication drivers

KN X

Time
control

Database
administration

Web- Interface

Z-Wave IEC61850
MMS

Logging

Resource
administration

H
ardw

are independent
execution

environm
ent

APIService

User interface
control

Applications

Administra tion
Interface

Price- based
Management

Devices (represented as Resources)

Freezer Micro-
CHP

Electricity
Price

Communication drivers

KN X

Time
control

Database
administration

Web- Interface

Z-Wave IEC61850
MMS

Logging

Resource
administration

H
ardw

are independent
execution

environm
ent

Figure 1: In-house framework overview

1.3. Concept and Standards of Web Services

1.3.1. Overview of Integration

The SmartHouse will need to interact with numerous external entities, let it be alternative energy resources,
marketplaces, enterprises, energy providers etc. The de-facto standard for high-level communication today
is via web services, which allows for flexible functionality integration without revealing details for the
implementation. Therefore, the heterogeneity is hidden, while a common service-based interaction is
empowering the creation of sophisticated applications.

Marketplace

Enterprise

Alternative
Energy
Source

Energy Providers

Figure 2: Service interaction of the SmartHouse with external entities

The SmartHouse/SmartGrid project is deeply investigating the possibility of using web services at least for
the interaction of the SmartHouse with other SmartHouses, and with entities in a SmartGrid.

In-house architecture and interface description

9/66

1.3.2. In-House Device Interaction

We already mentioned that web services are the de-facto standard for high-level and cross-enterprise
cooperation. Within the SmartHouse, we have numerous protocols and even different technologies at the
hardware communication layer. It is, however, a common belief that all of this heterogeneity will be hidden
behind gateways and mediators, which will eventually allow the device to tap into an IP-based
infrastructure, using Internet standards. Already today, the IP protocol is developed further to run in tiny
and resource constrained devices (6lowpan), while with the IPv6 (and 6lowpan), any device will have its
own IP address and be directly addressable.

Event
Subscription

DPWS
Device

DPWS Device
(BEMI GW)DPWS

Device

DPWS
Device

DPWS
Device

Enterprise
Services

Dynamic
Discovery

Service
Subscription

Data
Evaluation

Monitoring
and

Manageme
nt

Discovery

P2P Interaction
among Devices

and Services

DPWS
Device

Figure 3: Device Peer-To-Peer interaction in the SmartHouse

Due to IP penetration down to discrete device level, it is expected that devices will not only provide their
information for monitoring to controlling entities, but will be able to dynamically discover nearby devices
and collaborate with them (as depicted in Figure 3). In this way, P2P interactions will emerge, which can be
exploited by locally running applications that execute monitoring or controlling tasks.

Devices in the SmartHouse are and will remain highly heterogeneous, both in hardware and in software. As
such, we need to find a way that this heterogeneity is abstracted, and yet communication (and collaboration)
among them can be achieved. The development of middleware approaches that act as the “glue” for device
to business connectivity (and later also for device to device connectivity) is a viable approach. The
SmartHouse/SmartGrid project intends to use such an approach, as depicted in Figure 4.

In-house architecture and interface description

10/66

Cloud
Enterprise
Services

Enterprise
Services

Event
Subscription

Enterprise to shop-floor
Communication

Internet
Server

DPWS Services
(Java6 Applet)

DPWS
Device DPWS Device

(BEMI GW)

DPWS
Device

DPWS
DeviceDPWS

Device

Internet

Local
Network

DPWS
Device

Figure 4: Enterprise assisted device interaction in the SmartHouse (see Figure 6 for details)

In parallel to local collaboration, devices with advanced capabilities will be able to interact with network-
based services hosted in enterprise systems, or simply somewhere on the Internet. These devices will be able
to simply enhance their own functionality in a dynamic way by simply invoking services that were not
thought of at the time of device design. As an example, price signals are often brought up as a key
functionality. In this example, the device would get a price signal from the energy provider and adapt its
operation accordingly.

Figure 5: Smart meter and device collaboration beyond billing

In-house architecture and interface description

11/66

1.3.3. Enterprise Integration Architecture

The Enterprise Integration Architecture (as depicted in Figure 6) enables enterprise-level applications to
interact with and consume data from a wide range of networked devices using a high-level, abstract
interfaces that features (web) services standards. Those standards already constitute the common
communication method used by the components of enterprise-level applications. Web services are the
technology canonically used to implement business processes, which are frequently modelled as
orchestrations of available web services. This allows the connected, networked devices to directly participate
in business processes while neither requiring the process modeller nor the process execution engine to know
about the details of the underlying hardware.

Figure 6: Enterprise Integration Architecture

The architecture implemented hides the heterogeneity of hardware, software, data formats and
communication protocols that is present in today's embedded systems. The following layers can be
distinguished: application interface, service management, device management, security, platform
abstraction, protocols and devices.

Application Interface: This part of the integration architecture features a messaging (or eventing)
system, allowing an application to consume any events whenever it is ready to and not when a low-level
service happens to send them. A so called invoker allows buffer invocations to devices that are only
intermittently connected. Finally, a service catalogue enables human users and applications to find
service descriptions and pointers to running service instances. Both atomic services hosted by the
devices and higher-level composed services are listed here.

Service Management: All functionality offered by networked devices is abstracted by services. Either
devices offer services directly or their functionality is wrapped by a service representation. On this layer
of the integration architecture and on all layers above, the notion of devices is abstracted from, and the
only visible assets are services. An important insight into the service landscape is to have a repository of
all currently connected service instances. This is provided by the service monitor.

In-house architecture and interface description

12/66

This layer also provides a runtime for the execution of composed services. We support the composition
of business processes primarily by offering an execution service for underspecified BPEL processes,
meaning that service compositions can be modelled as business processes where the involved partners
do not need to be explicitly specified at design time.

Device Management: All devices are dynamically discovered, monitored and their status is available to
the enterprise services. Furthermore, it is possible to remotely deploy new services during run-time, in
order to satisfy application needs.

Security: Both devices and back-end services may only be accessed by clients that have a certain role and
provide correct credentials that authenticate themselves. This layer implements the correct handling of
security towards the devices and the enterprise-level applications.

Platform Abstraction: As stated before, devices either offer services directly or their functionality is
wrapped into a service representation. This wrapping is actually carried out on the platform abstraction
layer. In the best case, a device offers discoverable web services on an IP network. In this case, no
wrapping is needed because services are already available. If the device type, however, does not have
the notion of a service (it might use a message-based or data-centric communication mechanism), the
abstraction into services that offer operations and emit events can be a complex task. In addition to
services enabling the communication with devices, this layer also provides a unified view on remotely
installing or updating the software that runs on devices and enables the devices to communicate
natively, i.e. in their own protocol with back-end devices.

Protocols: We expect that heterogeneity in communication protocols will exist also in the future as it
serves different domains and respectively devices.

Devices: Heterogeneous devices are expected to connect to the architecture. These include industrial
devices, home devices, or IT systems such as mobile phones, PDAs, production machines, robots,
building automation systems, cars, sensors and actuators, RFID readers, barcode scanners, or power
meters. We used several of the listed types of devices during prototype implementations.

1.3.4. Gateway and Service Mediator

Gateways and mediators are used to integrate low capability or legacy devices. Lately with the emergence of
SOA we are also witnessing gateways and specialized mediators (“Service Mediators”) that offer the
functionality of the devices they abstract as a service.

The Gateway: A Gateway is a device that controls a set of lower-level non-service-enabled devices, each
of which is exposed by the Gateway as a service-enabled device. This approach allows to gradually
replace limited-resource devices or legacy devices by natively WS-enabled devices without impacting
the applications using these devices. This is possible since the same (web service) interface is offered this
time by the (service-enabled) device and not by the Gateway. This approach is used when each of the
controlled devices needs to be known and addressed individually by higher-level services or
applications.

The Service Mediator: Originally meant to aggregate various data sources (e.g. databases, log files, etc.),
the Mediator components evolved and are now used to not only aggregate various services, but possibly
also to compute or process the data they acquire before exposing it as a service. Service Mediators
aggregate, manage and eventually represent services based on some semantics (e.g. using ontologies).

Service Mediators aggregate various heterogeneous devices so that higher level application could
communicate to Service Mediators offering WS, instead of communicating to devices with proprietary
interfaces. The benefits are clear, as we don't have the hassle of (proprietary) driver integration.
Furthermore now processing of data can be done at Service Mediator level and more complex behaviour
can be created, that was not possible before from the standalone devices.

In-house architecture and interface description

13/66

Figure 7: The gateway and (service) mediator concepts

1.3.5. Device Profile for Web Services (DPWS)

DPWS defines a minimal set of implementation constraints to enable secure web service messaging,
discovery, description, and eventing on resource-constrained devices. DPWS is an effort to bring web
services on the embedded world taking into consideration its constrained resources. Several
implementations of it exist in Java and C, while Microsoft has also included a DPWS implementation
(WSDAPI) by default in Windows Vista and Windows Embedded CE.

DPWS Devices

Figure 8: Dynamic discovery of DPWS devices in Windows Vista

In-house architecture and interface description

14/66

In August 2008, the OASIS Web Services Discovery and Web Services Devices Profile (WS-DD) Technical
Committee was created to further advance the existing work, e.g. DPWS. On May 13, 2009, the OASIS Web
Services Discovery and Web Services Devices Profile (WS-DD) Technical Committee unanimously approved
the following specifications as Committee Specifications:

Web Services Dynamic Discovery (WS-Discovery) Version 1.1

Devices Profile for Web Services Version 1.1

SOAP-over-UDP Version 1.1

The specifications have now been submitted for consideration as OASIS standards. It is expected that the
announcement of the submission will be made to the full OASIS membership on June 1, 2009, and the voting
period will be June 15-30, 2009.

DPWS Device
Information

Figure 9: Asset management and direct device information via DPWS

2. In-house service definitions

2.1. Modelling of resource types

To make the platform flexible for new applications and new devices it must be possible to add new device
types to the system during runtime. The description of these new device types shall use standard resource
types wherever possible. If, for example, a device type “wine cabinet” shall be added to the system, the new
resource type “Wine Cabinet” shall use the existing types “Electrical Switch” and “Temperature Storage” as
part of the model. In this way, an application performing management of dives containing a thermal storage
that does not know the type “Wine Cabinet”, but knows the types for the switch and the temperature
storage, can still control the new device type just by addressing the known sub-resources.

To allow for dynamic adding of resource types a modelling language has to be defined. If the framework is
implemented using an object oriented language, the easiest way for this language is to describe the resource
type as a class of this language.

In order to allow for a general processing of new resource types, the type description should not contain any
services, but all services that can be performed on resources should be defined by the resource

In-house architecture and interface description

15/66

administration. So each resource type can only contain data elements that are either of “basic type” or of
another resource type that has been defined before. For the scope of this in-house architecture five basic
resource types are considered sufficient:

Boolean

Integer

Analogue (most Analogue values need a physical unit. Each implementation must specify how the units
are defined)

String (character chain either coded as ASCII or Unicode)

Time (may represent a point in time or a time duration)

The type “Enumerated” is used for variables for which several options are specified. How these options are
represented in a language-specific specification is not defined here.

An array in this context is a list of data entities of the same type that are accessed via an index.

Additionally the framework has to define references to various data types required by the services of the
framework. These references might by names, id’s or references to objects depending on the implementation.
A list of these reference types is given in Annex II.

For each basic element of a resource type it must be specified whether the value is a parameter or any other
value that needs to be stored in the persistent storage or whether the value is a measurement value that is
updated continuously and thus should not be written into the permanent storage every time it is changed.

The first data model to be defined is the data structure defining a resource type description:

Resource Type Description TypeDesc OSGI-impl.

Name/Description Type Persistent Name Unit

name String yes name -

number of elements
(defining length of Arrays)

Integer yes - -

Data elements
Array of
DataElement

yes dataElement -

with the structure DataElement:

Element of a Resource Type
Description

DataElement OSGI-impl.

Name/Description Type Persistent Name Unit

name String yes name -

type ResTypeRef yes type -

determine whether element is
persistent

Boolean yes persistent -

Table 1: Resource Type description

In-house architecture and interface description

16/66

Further data models (device models, other management data models such as pricing and metering data,
system data models) are given in the Annex.

2.2. Services of the Resource Administration of the Framework

Access and administration of resources, resource types and communication systems are performed by the
Resource Administration. The most important services of the Resource Administration comprise (see Annex
for details):

Management of resource types
o add/delete resource type
o get all resource types registered, get elements of a resource type

Management of resources
o add/delete resource: When a resource is added it must be based on a resource type that was

registered before.
o get resource name/type
o get super/top-level resource: Most devices contain sub structures represented by sub resources. This

service allows to step up in a tree of resource elements or just get the top-level resource representing
an entire device

o get a certain child resource based on its name

Search for resources
o search for all resources fitting a resource type description
o search for all resources that are sub resources of a resource

Read / write of resources
o read from element of a resource (in general this works only for data elements that are stored

persistently; volatile measurement values should be acquired by registering an appropriate resource
demand for reading.)

o write into element of a resource

Management of communication systems
o add/delete communication systems
o get communication systems installed

Management of the resource demand of applications
o register resource demand: applications usually control resources of one or several defined resource

types (e.g. a freezer energy monitoring application) or devices that contain certain sub-resources
(e.g. a temperature storage for a state-of-charge (SOC) based energy management). Using this
service an application can tell the framework that they are able to read from such devices. In this
case the application is informed as soon as such a device is available and also when the device is
disconnected again. In case the application also needs to control the device (write to the device), a
decision has to be made which application gets control on the device in case several applications are
registering the same type of demand. This decision is made by the resource administration based on
the priority of each resource demand.
It must be specified by each language implementation how the application is informed of new
resources fitting a demand, changes of the demand fulfilment and changes of the values of the
resources that are assigned to an application (e.g. event/messaging or call-back specification).

o register secondary demand: in some cases an application only needs access to a device when another
resource demand can be fulfilled. It may even be the case that a resource must fit to two different
resource demands at the same time. For example the management of SOC-based devices is only
possible if they contain a temperature storage and at the same time a switch that can be controlled
by the management. This service allows adding such a secondary demand to another demand
registered before.

In-house architecture and interface description

17/66

In many cases a resource type can only describe the most basic attributes of a device type. To make this
resource description extensible, additional sub-resource types may be defined that can be added to a
resource of a certain resource type. These resource types are called “Additional-Types”. For example the
general freezer model may just contain a switch and a temperature storage. An additional type of the
resource type “Freezer” may be characterized by a resource type “Door Closed Sensor”. Additional services
are required to allow for the handling of additional-types:

add/delete additional-type

add sub-resource of additional-type to a existing resource

2.3. Services of the Persistent Storage

The main function of the persistent storage is to store data that needs to be recovered after a shutdown and
restart of the framework and the applications. Typically this is the function of a database. In order to make
access usage as simple as possible and to meet the specific needs of energy management and efficiency
related applications, the framework offers specialized data structures. Three main types of data are
considered relevant for the scope of this framework:

“Preferences” (=”properties”/”parameters”/”settings”):
Set of values and arrays of basic values that can be accessed by two names (Preferences Set name and
Preference name). As the name indicates this is mainly intended to store preferences/properties/
parameters of the applications. When a property is read, a default value should be provided by the
application, which should be returned in case the property has not been set before.

“Schedule Series”:
Time-based series of data of that is provided in uniform time ranges such as minutes, days or years.
Currently, only fixed-step-schedules are considered meaning that each type of schedule defined by a
“Schedule Series Definition” object has equal time steps of a certain time span. Schedules are used e.g. to
represent price profiles, metering profiles and device schedules. Each language-specific specification of
the framework must specify to which time zone the schedules should be aligned. Usually, this should be
the local time zone of the system so that most applications do not have to worry how they are situated
relative to the schedule alignment (except for applications that need global time).

“Time Series Set”:
Each Time Series Set contains one series of time stamps. Furthermore, it contains time series of data,
usually measurement values. For each time stamp, exactly one value exists for each time series of data.
This allows for efficient storage of measurement data that shall be logged with a certain frequency. A
time series can be opened and closed for writing. However, the number and name of the data series can
change when a time series set is re-opened. In this case, a time series may end at some point or start. This
is necessary as the exact configuration of sensors that should be logged based on a certain frequency
may change (see description of services for details).

The following data structures are required for operating on these types:

Time Series Set definition TimeSeriesSetDef

Name/Description Type

Number of time series in the Time Series Set (defining length of Arrays) Integer

Names of time series Array of String

Start time of Time Series Set Time

In-house architecture and interface description

18/66

Time Series Set definition TimeSeriesSetDef

Name/Description Type

Reduction mode (the framework should support the reduction of the data
stored compared to the data written into the Time Series Set):

no reduction
under-sampling (has the same effect as writing to the time series with a
lower frequency)
mean
 maximum deviation from standard value

Enumerated

Reduction factor Integer

Duration data may be stored in non-permanent storage before written to
permanent storage. This may be used in order to optimize performance by
reducing writing operations to a hard or solid state disk.

Time

Maximum number of time stamps within Time Series Set. If more time steps
are collected, the number of elements shall be cleaned up as defined below

Integer

Clean-up/delete mode:

delete oldest data ("ring buffer")
make sure that 50% of the maximum number of time stamps is
maintained with all data provided, the rest should be thinned out so that
the time range to the oldest time stamp is at least 10x the time range to the
50% time stamp
(may be extended)

Enumerated

Schedule Series Definition ScheduleDefinition

Name/Description Type

Type: May be Boolean, Integer or Analogue. Time- and String-schedules are
not considered relevant to the scope of this framework.

BaseType

ScheduleTiming: decides whether the time stamp for each value is
determined by:

the start time and a fixed step size
absolute time stamps
time stamps relative to the start time of the schedule

Enumerated

In-house architecture and interface description

19/66

Schedule Series Definition ScheduleDefinition

Name/Description Type

Interval covered by one schedule, options must be at least

Year : this means that even fixed-step-schedules vary in absolute length
due to leap years
Year with 366 days, final values may be meaningless
¼-year this means that even fixed-step-schedules vary in absolute length
¼-year with 92 days, final values may be meaningless
Month: this means that even fixed-step-schedules vary absolute length
Month with 31 days, final values may be meaningless
Week
Day
Hour
Minute

Enumerated

Switch with daylight savings time:

schedule alignment switches with beginning and end of daylight savings
time
schedule does not switch with daylight savings time. If schedule are
aligned to a local time switching to daylight savings time, the schedule
shall always be aligned to winter time.

Enumerated

Value returned of schedule is not available for a certain time step Must be able to
represent Boolean,
Integer and Analogue

Step size (for schedules using a fixed step size only) Time

Elements of a single schedule with fixed time step (other schedules are not specified yet), which contains the
data for one interval specified for a single schedule in the corresponding Schedule Series definition:

Fixed Step Schedule (single schedule) ScheduleFixedStep

Name/Description Type

corresponding Schedule Series definition ScheduleDefinition

start time of schedule Time

values of schedule Array of <Type
according to sche-
dule definition>

backup type: if true, the schedule is a backup schedule Boolean

Backup condition (only relevant for backup schedules):
see dissertation thesis of David Nestle for details

Integer

In-house architecture and interface description

20/66

The following services are required to operate on these three types of persistent data (see Annex for details):

Preferences
o create/delete parameter set
o add/delete parameter to parameter set
o read/write parameter

Schedule Series
o create/delete schedule series definition
o get schedule series definition
o add schedule: new scheduled information is added
o get schedule: The schedule shall be built based on regular schedules added for the scheduling period

and backup schedules if necessary
o get value from schedule: Based on a time specified the corresponding scheduled value is returned
o get type of schedule (Boolean, Integer, Analogue)

Time Series Set
o create/delete Time Series Set Definition
o open/close Time Series Set: When a Time Series Set is re-opened the time series that are included

shall be specified. In case a time series is already known in the Time Series Set, it shall be continued.
Otherwise it shall be added. In case a time series previously declared, but not included in a re-
opening, new values cannot be added until the Time Series Set is closed and re-opened again. The
time series shall be kept in the Time Series Set for further re-openings, however.
This means that a Time Series Set contains exactly one value per time step for each time series
included in the interval of one opening. Time series not included in a certain opening do not have
values for this interval, however.

o get Time Series Set definition of a Time Series Set
o add time stamp and one value for each time series opened into a Time Series Set
o change value already written into Time Series Set
o read values of one or several time series within an interval of time stamps specified from one Time

Series Set (this should be possible independently of whether a Time Series Set is opened or not)
o read values of one or several time series from one or several Time Series Sets within an interval of

time stamps specified. Usually the different Time Series Sets do not have the same time stamps
within the interval, so an alignment of the time stamps has to be specified.

2.4. Logging Services

Logging services are grouped into two sub-functionalities:

Logging of text messages

Data series logging

The first area is relatively simple and just requires a method to send log messages with fields for the sender
and the logging/service level into a log file, which should also contain the time when the log message was
generated.

For the area of data logging the following services are required (as these services are still under development
they are not specified in more detail in Annex yet):

register data element from resource for logging (Input: data element, frequency of logging value (should
support a default frequency and a trigger signal from the measurement system indicating that a new
value is available), parameters of Time Series Set regarding reduction, storage cleanup, RAM-buffer
usage etc.) All logged values with the same logging frequency should be stored in the same Time Series
Set using the parameters specified.

unregister data element from logging

In-house architecture and interface description

21/66

get logging configuration for a certain data element

get access to logged data for a resource (return Time Series Set and time series)

get all data elements that are currently logged

generate evaluation from logged data of a data element (at least mean, standard deviation, minimum
and maximum should be supported)

Furthermore, it should also be possible to calculate certain statistical data without storing entire data logs. In
this case for each new measurement value a statistical value is updated by an appropriate algorithm, but the
new value itself does not have to be stored.

register continuous evaluation for a data element

unregister continuous evaluation for a data element

get evaluation configuration for a data element

get access to evaluation results for a data element

get all data elements that are currently evaluated

The framework should also support processing of events that are generated by applications for logging
purposes. Usually events should be counted and written into the text message log.

register event type

unregister event type

report event to the logging service: The event type must be known to the system, events may be
connected to a resource.

get number of events counted of a certain type

evaluation of number of events based on a type/resource specification

2.5. Services of the User Web Interface

The user web interface consists of the administration interface (accessible only for the administrator), web
pages installed by applications and a common start page. Usually, applications should not control the entire
browser pane, but a fixed navigation area giving access to all applications and showing “Favourites” should
be included. The web interface preferences should contain the following support and pieces of information
(as these services are still under development, they are not specified in more detail in Annex, yet):

Can the user web interface accessed via the internet?

Should the user web interface always start from the common start page, from another page or from the
page last viewed?

Control of favourite navigation bar (may be set by user, most frequently used applications, determined
by frequency of usage of single page or by an application)

Port on which user web interface can be accessed (IP configurations should be made via an appropriate
communication system)

Configuration of SSL/TLS if applicable

The preferences may be editable via the administration interface. The common start page and the application
pages are usually accessible without login from the local network and via a list of defined logins from the
internet.

Services of the web interface for applications are:

In-house architecture and interface description

22/66

Register/delete web resource (HTML with dynamic content, picture, file for download, …)

The programming environment to be used to express dynamic web page content shall be specified by the
framework.

2.6. Runtime Control of Applications and Communications Systems

The framework must support operation of several applications and communication systems in parallel. The
runtime control of these applications will usually somehow be controlled by the framework. The module of
the framework performing this task is called the “Time Control”. There are two fundamental concepts
available in most operating systems to implement this: Each application could run in a separate thread or all
applications could run in a common thread with a step function of each application being called from the
time control.

In many cases, synchronous operation of applications and communication systems has advantages. Usually,
applications need input from communication systems and vice versa. So it makes sense to perform exactly
one iteration of an application after one iteration of the communication systems. This is ensured with the
second approach explained above. If the application directly reacts on the call-back method, events or
interruptions that are invoked from the resource administration as soon as a new measurement value is
available can also be solved using separate threads, though.

The second approach also avoids almost all problems regarding timing of application interaction as every
application can assume that it will be able to finish the current iteration before any other application accesses
any common data or starts any call-back function. When all write operations on resources require that the
resource demand has been registered and approved before writing, this is not any issue anyways, however.

The second approach also makes debugging of a set of applications easier as the order of execution is
predictable. For this reason, it is recommended that a framework supports step functions being called from
the time control.

There are also some problems with this approach, though. In case an application has idle time during its step
function, this approach will lead to idle time of the entire framework as other applications can only start
their operation after the step function of this application is finished. For this reason a combination of both
approaches will be necessary.

This can be done in two ways:

Applications with idle time start a separate thread for the relevant part of the program. The separate
thread shall not perform any asynchronous write, but hands the result of each write operation over to
the step function of the application, which performs the write operation of the latest values available
synchronously. From the perspective of the time control, this does not require any additional
functionality. If reading by the application needs to be synchronized this usually is the only way of
implementation as the step function can perform the relevant reading and store the values for the
asynchronous part of the application. In case the registration of resource demand mechanism ensures
that only one application is allowed to write to a certain resource at a time, also writing from a separate
thread is no problem.

Applications can tell the time control that they need to operate asynchronously. The time control calls
the step function in a separate thread. Write operations from these applications are stored, but not
executed by the Resource Administration before the end of a synchronous cycle of the time control. This
requires additional functionality of the framework. The advantage is the fact that programming the
application does not require additional effort. In case the registration of resource demand mechanism
ensures that only one application is allowed to write to a certain resource at a time there is no need for
this option.

The second problem occurs in case a malfunctioning application does not return from a step function. In this
case, all synchronous applications are blocked and do not operate anymore. For this reason, safety-relevant

In-house architecture and interface description

23/66

applications should start their own thread. It is also recommended to implement some kind of watch dog
functionality, which restarts the system in case a step function is blocking for a certain time. The blocking
application should not be started anymore after the restart of the system and the administrator should be
informed automatically. In this way malfunctioning applications can be detected quickly, which can be
considered an advantage of the approach.

2.7. Services of a communication system

Each communication system must implement a number of services that are used by the resource
administration and the administration interface. These services are (see Annex for details):

get name

get minimal time step between two cycles of acquiring data

check if minimal time step varies (e.g. based on the number of sensors that are connected via the
communication system)

set/get standard time step for new sensors (the standard time step must be equal or greater than the
minimal time step allowed, of course)

get configuration data / notification on update of configuration data

check whether an address is valid for the communication system

connect a resource data element to an address, should return a ComConnectionRef (used if the
communication system does not support plug&play itself so that device resource representation has to
be registered and connected by the user itself or by an application)

close connection between data element and an address

request to update a connected data element based on the ComConnectionRef

In case the communication system is acting as a server (waiting for connections from the outside, not able to
start communication requests actively), the time step between two cycles of acquiring data and a request for
update of a connection usually has no meaning unless an outside client supports such a parameter and
allows for server controlled polling/pushing. When the communication system represents a server; an
address shall represent the address on which clients can target a resource.

Usually; each data element should not be connected to more than one communication system. In case a data
element is connected to two communication systems, the framework acts as a gateway.

2.8. Security

The framework must include an administrative interface. This interface must support a role-based access
model. If access to the administrative interface is implemented using a public network, all data transmission
must be encrypted. SSL/TLS is suggested as a standard for a web based user interface. If the web interface
can only be accessed from the local network, encryption is not considered necessary.

The framework should also support different roles, at least “Customer”, “Energy Supplier” and
“Distribution System Operator (DSO)”. Further possible roles could be service support for various devices,
metering company etc. Applications should be signed by the owner of a role thus connection the application
to a role.

In the user interface; it shall be possible to assign permissions to read or to read/write a device to a role. The
framework should check if an application has the right to access a resource in the desired read/write-mode
based on the permissions of the role that signed the application before installation.

It is not assumed possible to prevent a malicious application from causing harm when installed in the
framework. The prevention from malicious applications shall be performed by checking the signature from a

In-house architecture and interface description

24/66

trusted owner of a role. The permissions and limitations assigned to the owner of a role means that
applications provided by the owner cannot access resources against the will of the administrator “by
chance”, but the framework would not be able to withstand intended and sophisticated attacks from a
trusted application. As the source of a trusted application is usually known criminal behaviour could be
prosecuted.

Each role must contain a definition of the default access right to devices (=top level resources) for which no
permissions have been explicitly defined. It should also be specified if the owner of the role may install
applications without further approval of the administrator. Usually this should be the case so that owners of
a role can install updates of their applications.

The administrative interface must support:

View/Create/delete of new roles (may be disabled by the provider of the framework)

Assign/change signature to a role (this is necessary, when the owner of a role changes). In this case it
should be possible to remove all applications installed by the old owner of the role from the framework.
This function may be limited by the provider of the framework, e.g. if the system is provided based on a
contract giving the provider a certain role. Usually the owner of the DSO cannot be changed.

Assign permissions to resources for roles

View/Install/uninstall applications (the administrator may be able to do this independently of a
signature, if he/she trusts the application; this function may be disabled by the provider of the
framework)

Approve applications from roles that need individual approval for each new application

View/Load/delete resource types (can also be done by applications via the resource administration)

View/Create/delete resources (can also be done by applications via the resource administration)

Change priority of resource demands registered by applications

View/Change preferences of communication systems

Change administration password and create additional user/password pairs to access user web interface
via the internet

View/change all resource values and application preferences values (optional)

Furthermore, the framework must offer an interface accessible over the internet which allows owners a role
to send new/updated signed applications that will be installed automatically or after approval of the
administrator. It should also be possible to remove applications via a signed command that were installed by
the respective role. As the applications are signed encryption is not necessary, but might be of interest in
some cases.
Other functions of the administrative interface cannot be accessed by applications. It may be possible,
however, to provide configuration files that change a number of configurations without further interaction
of the administrator. These files must be human readable and understandable for technically interested
customers and they can be executed in the administration interface. These configuration files must also be
signed when sent to the framework.

3. In-house Device Models
In the first line of each of the following tables, the purpose and meaning of each data model is described. In
the second field of this line, the short name of the type is given that is used as type description when the type
is used as an element of another data model. Basic types and other types listed in the specification of main
components are not defined in this document.

In-house architecture and interface description

25/66

Although the OSGi implementation of the framework is outside the scope of this document, the names and
the units of the data elements are given here as these definitions might be used also by other
implementations.

3.1. System Resource Types

3.1.1. Reference Types

The framework has to define references to various data types required by the services of the framework.
These references might by names, IDs or references to objects depending on the implementation. The short
name given in brackets will be used in the following models when part of a data model. The following
reference types are needed:

Reference to a resource type (ResTypeRef)

Reference to a resource (ResourceRef)

Reference to a communication system (ComSystemRef)

Reference to a communication connection (ComConnectionRef)

Reference to a time series set (TimeSeriesSetRef)

Reference to a time series (TimeSeriesRef)

Reference to a schedule definition (ScheduleDefRef)

Reference to a continuous evaluation (EvalRef)

Reference to an electric circuit of phase (ElCircuitRef)

Reference to a room of the customer’s premises (RoomRef)

Basic Type (BaseType)

3.1.2. System Types

Schedule resource reference SchedResRef OSGI-impl.:

Name/Description Type Persistent name unit

Name String yes name -

Time Series resource reference TimeSeriesResRef OSGI-impl.:

Name/Description Type Persistent name unit

Name of Time Series Set String yes timeSeriesSet -

Name of time series String yes timeSeries -

In-house architecture and interface description

26/66

3.2. Common elements

Electric switch ElSwitch OSGI-impl.:

Name/Description Type Persistent name unit

State Boolean yes state -

Controlled switch that does not switch
electrical power on grid voltage level

NonElSwitch OSGI-impl.:

Name/Description Type Persistent name unit

State Boolean yes state -

Electric Multi-step-switch ElMultSwitch OSGI-impl.:

Name/Description Type Persistent name unit

Number of points on setpoint curve Integer yes setPointNum -

Power at each set point
Array of
Analogue

yes setPoint W

Current power selected Analogue yes state W

Electric Step-less power control ElControl OSGI-impl.:

Name/Description Type Persistent name unit

Maximum power consumed Analogue yes totWAvMaxConsume W

Maximum power generated Analogue yes totWAvMaxGen W

Current power selected Analogue Yes state W

Electric Connection of device ElConn OSGI-impl.:

Name/Description Type Persistent name unit

Rated power Analogue yes ratedPower W

Measured power Analogue no mmxPower W

Circuit the device is connected to ElCircuitRef yes elCircuitId -

In-house architecture and interface description

27/66

Electric Connection of device ElConn OSGI-impl.:

Connection type:

fixed connection
plug, usually connected
plug, frequently disconnected (e.g.
device connected via a manual switch)
plug, connected at various places
 (e.g. vacuum cleaner)

Enumerated yes connType -

Temperature Storage TempStor OSGI-impl.:

Name/Description Type Persistent name unit

Rated operational temperature Analogue yes stdOpTemp K

Rated maximum temperature Analogue yes maxstorTemp K

Rated mimimum temperature Analogue yes minstorTemp K

Measured temperature Analogue no mmxTemp K

Outer physical dimensions and
situation

PhysDim OSGI-impl.:

Name/Description Type Persistent name unit

Height Analogue yes height m

Width Analogue yes width m

Depth Analogue yes depth m

Room where device is situated (negative
number indicates a device installed
outside, not in a room with walls and a
roof)

RoomRef yes roomNumber -

Integration type:

separate device, location may change
regularly
separate device, but usually fixed
location
integrated into in-house construction

Enumerated yes integrationType -

Program Selection Unit ProgUnit OSGI-impl.:

Name/Description Type Persistent name unit

Number of programs available
(length of arrays)

Integer yes progNum -

Duration of each program Time yes progDuration -

In-house architecture and interface description

28/66

Program Selection Unit ProgUnit OSGI-impl.:

Name/Description Type Persistent name unit

Name of each program String yes progName -

Choice of program (according to index of
array)

Integer yes state -

3.3. White Goods
Fridge Fridge OSGI-impl.:

Name/Description Type Persistent name unit

Cooling space parameters incl. sensor TempStor yes coolSpace -

Switch ElSwitch yes elSwitch -

Electrical connection and measurement ElConn yes elConn -

Cooling space size Analogue yes ratedVolume m3

Physical dimensions and situation PhysDim yes dim -

Freezer Freezer OSGI-impl.:

Name/Description Type Persistent name unit

Freezer space parameters incl. sensor TempStor yes coolFreeze -

Switch ElSwitch yes elSwitch -

Electrical connection and measurement ElConn yes elConn -

Freezing space size Analogue yes ratedVolume m3

Physical dimensions and situation PhysDim yes dim -

Cooling/Freezing Combination FreezeCombi OSGI-impl.:

Name/Description Type Persistent name unit

Cooling space parameters incl.
sensor

TempStor yes coolSpace -

Freezer space parameters incl. sensor TempStor yes freezerSpace -

Switch ElSwitch yes elSwitch -

Electrical connection and
measurement

ElConn yes elConn -

Cooling space size Analogue yes ratedVolumeCool m3

Freezing space size Analogue yes ratedVolumeFreeze m3

Physical dimensions and situation PhysDim yes dim -

In-house architecture and interface description

29/66

Washing Machine WashingMachine OSGI-impl.:

Name/Description Type Persistent Name unit

Available programs and selection of
program

ProgUnit yes progUnit -

Switch ElSwitch yes elSwitch -

Electrical connection and measurement ElConn yes elConn -

Capacity of clothes Analogue yes laundryRating kg

Physical dimensions and situation PhysDim yes dim -

Laundry Dryer Dryer OSGI-impl.:

Name/Description Type Persistent name unit

Available programs and selection of
program

ProgUnit yes progUnit -

Switch ElSwitch yes elSwitch -

Electrical connection and measurement ElConn yes elConn -

Capacity of clothes Analogue yes laundryRating kg

Physical dimensions and situation PhysDim yes dim -

Dish Washer DishWasher OSGI-impl.:

Name/Description Type Persistent name unit

Available programs and selection of
program

ProgUnit yes progUnit -

Switch ElSwitch yes elSwitch -

Electrical connection and measurement ElConn yes elConn -

Capacity in standard dish sets Analogue yes dishRating -

Physical dimensions and situation PhysDim yes dim -

In-house architecture and interface description

30/66

3.4. Central Data

Electricity Price for consumption
also used for generation if no other
price is specified

PriceElectricityCon OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule for
consumption in persistent data storage

SchedResRef yes schedule
currency/
kWh

Electricity Price for generation from
CHP (including biomass fired if no
other price is specified)

PriceElectricityCHP OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule in persistent
data storage

SchedResRef yes schedule
currency/
kWh

Electricity Price for generation from
biomass

PriceElectricityBiomass OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule in persistent
data storage

SchedResRef yes schedule
currency/
kWh

Electricity Price for generation from
biomass fired CHP plants

PriceElectricityBioCHP OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule in persistent
data storage

SchedResRef yes schedule
currency/
kWh

Note: If price schedules for CHP and Biomass are available but no schedule for biomass fired CHP usage of
the correct schedule shall be up to an agreement between the operator of the plant and the buyer of the
electricity. In case no agreement is available the operator shall have the right to choose whether the
generation system is declared as „CHP“ or as „Biomass“.

Electricity Price for generation from
photovoltaics.

PriceElectricityPV OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule in persistent
data storage

SchedResRef yes schedule
currency/
kWh

In-house architecture and interface description

31/66

Electricity Price for any
generation/delivery to the grid not
specified by other generation prices

PriceElectricityGen OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule in persistent
data storage

SchedResRef yes schedule
currency/
kWh

Price of delivery of natural gas PriceNatGas OSGI-impl.:

Name/Description Type Persistent name unit

Name of price schedule in persistent
data storage

SchedResRef yes schedule
currency/
kWh

3.5. Heating, Ventilation and Cooling Consumption Devices

Heat generating unit HeatGenUnit OSGI-impl.:

Name/Description Type Persistent name unit

Rated thermal power Analogue yes totWAvHeat W

Thermal efficiency (heat energy/input
energy)

Analogue yes efficiency -

Start up time from cold start of heat
generating unit to 90% of rated power

Time yes startUpCold -

Start up time from warm start (output
power just reduced to zero) to 90% of
rated power

Time yes startUpWarm -

Heat generating unit optional
operational parameters

HeatGenUnitOpt OSGI-impl.:

Name/Description Type Persistent name unit

Minimum run time Time yes minRunTime -

Minimum cool down time Time yes minStopTime -

Optimal run time (the device should be
running for at least this time if not an
emergency or beginning of period of
very high price)

Time yes optRunTime -

Cost of additional start up of the device
(e.g. because of additional use of fuel and
additional maintenance required)

Analogue yes switchCost currency

In-house architecture and interface description

32/66

This model can be added as an additional type as not all heat generating units make use of such detailed
parameters

Heat connection HeatConn OSGI-impl.:

Name/Description Type Persistent name unit

Rated maximum flow Analogue yes ratedFlow m3/sec

Rated maximum temperature Analogue yes ratedTemp K

Heat circuit connected to Integer yes heatCircuit -

Measured input temperature Analogue no mmxTempIn K

Measured output temperature Analogue no mmxTempOut K

Measured flow Analogue no mmxFlow m3/sec

Measured power Analogue no mmxPow W

Indication of the heat circuit allows to model the way e.g. a cogeneration device, a heat buffer and an
auxiliary heat burner are interconnected.

Heat storage physical HeatStorPhys OSGI-impl.:

Name/Description Type Persistent name unit

Capacity Analogue yes capacity Wh

Rated operational temperature Analogue yes stdOpTemp K

Rated maximum temperature Analogue yes maxstorTemp K

Rated minimum temperature Analogue yes minstorTemp K

Measured temperature Analogue no mmxTemp K

Heat connection HeatConn yes heatConn -

Heat storages may also just provide their state of charge:

Temperature Storage SOC TempStorSOC OSGI-impl.:

Name/Description Type Persistent name unit

Minimum level buffer Analogue yes minSOC %

Maximum level buffer Analogue yes maxSOC %

Measured level buffer (state of charge –
SOC)

Analogue no mmxSOC %

Heat connection HeatConn yes heatConn -

In-house architecture and interface description

33/66

Ventilation Ventilation OSGI-impl.:

Name/Description Type Persistent name unit

Switch ElSwitch yes elSwitch -

Electric connection ElConn yes elConn -

Heat burner HeatBurner OSGI-impl.:

Name/Description Type Persistent name unit

Heat generation parameters HeatGenUnit yes heatGenUnit -

Switch NonElSwitch yes switch -

Heat connection HeatConn yes heatConn -

Physical dimensions and situation PhysDim yes dim -

Heat pump HeatPump OSGI-impl.:

Name/Description Type Persistent name unit

Heat generation parameters HeatGenUnit yes heatGenUnit -

Switch ElSwitch yes elSwitch -

Heat connection HeatConn yes heatConn -

Electric connection ElConn yes elConn -

Physical dimensions and situation PhysDim yes dim -

Electric Storage Heating ElStorHeat OSGI-impl.:

Name/Description Type Persistent name unit

Switch ElSwitch yes elSwitch -

Ventilation for transfer of heat from
storage to room

Vent yes ventilation -

Electric connection ElConn yes elConn -

Measured storage temperature Analogue yes mmxTemp -

Physical dimensions and situation PhysDim yes dim -

Air Conditioning AirCond OSGI-impl.:

Name/Description Type Persistent name unit

Switch ElSwitch yes elSwitch -

Electric connection ElConn yes elConn -

Physical dimensions and situation PhysDim yes dim -

In-house architecture and interface description

34/66

Temperature Sensor TempSens OSGI-impl.:

Name/Description Type Persistent name unit

Measured temperature Analogue no mmxTemp -

Physical dimensions and situation
(provides information where installed,
room number or outside sensor)

PhysDim yes dim -

3.6. Generation Devices

Cogeneration Device CHP OSGI-impl.:

Name/Description Type Persistent name unit

Heat generation parameters HeatGenUnit yes heatGenUnit -

Switch ElSwitch yes elSwitch -

Heat connection HeatConn yes heatConn -

Electric connection ElConn yes elConn -

Physical dimensions and situation PhysDim yes dim -

Electrical start up time from cold start to
90% of rated electrical power

Time yes elStartUpCold -

Electrical start up time from warm start
(output power just reduced to zero) to
90% of rated electrical power

Time yes elStartUpWarm -

Electric consumption at start-up (total
electrical energy consumption from grid
during start-up process)

Analogue yes startElEnergy Wh

Electric consumption at start-up (peak
power consumed from grid during
start-up process)

Analogue yes startElPower W

Fuel

natural gas
oil
solid biomass
vegetable oil
biogas

Enumerated yes fuel -

Electrical efficiency and overall efficiency can be calculated from rated electrical, thermal power and thermal
efficiency.

In-house architecture and interface description

35/66

PV plant PVplant OSGI-impl.:

Name/Description Type Persistent name unit

Switch ElSwitch yes elSwitch -

Electric connection ElConn yes elConn -

Power limit (requires derating if
production would be higher based on
current solar irradiation)

Analogue no powerLimit W

Physical dimensions and situation PhysDim yes dim -

3.7. Metering Data

Electrical meter profile ElMeter OSGI-impl.:

Name/Description Type Persistent name unit

Metered profile SchedResRef yes schedule kWh

Electrical circuit metered Integer yes elCircuitId -

Natural Gas meter profile GasMeter OSGI-impl.:

Name/Description Type Persistent name unit

Metered profile SchedResRef yes schedule kWh

Name of device or device group
metered

String yes deviceName -

Heat meter profile HeatMeter OSGI-impl.:

Name/Description Type Persistent name unit

Metered profile SchedResRef yes schedule kWh

Heat circuit metered Integer yes heatCircuit -

Water meter profile WaterMeter OSGI-impl.:

Name/Description Type Persistent name unit

Metered profile SchedResRef yes schedule kWh

Description of water circuit metered String yes circuitName -

In-house architecture and interface description

36/66

3.8. Forecast Data

Outside temperature forecast TempForecast OSGI-impl.:

Name/Description Type Persistent name unit

Forecast outside temperature profile at
the location of the premises

SchedResRef yes schedule K

Solar irradiation forecast SolarForecast OSGI-impl.:

Name/Description Type Persistent name unit

Forecast of solar irradiation at the
location of the premises

SchedResRef yes schedule W

Angle of inclination of a module
directing to south the forecast is made
for

Analogue yes schedule °

Wind speed forecast WindForecast OSGI-impl.:

Name/Description Type Persistent name unit

Wind speed forecast at the location of
the premises

SchedResRef yes schedule m/s

Altitude above ground the forecast is
made for

Analogue yes schedule m

Humidity forecast HumidityForecast OSGI-impl.:

Name/Description Type Persistent name unit

Humidity of outside air at the location
of the premises

SchedResRef yes schedule %

Precipitation forecast PrecipitationForecast OSGI-impl.:

Name/Description Type Persistent name unit

Precipitation forecast at the location of
the premises

SchedResRef yes schedule mm

In-house architecture and interface description

37/66

3.9. Energy Management Parameters

Fixed Program Shift Limits FPSLimit OSGI-impl.:

Name/Description Type Persistent name unit

First start time allowed Time yes startTime -

Final time the program has to be
finished latest

Time yes endTime -

Maximum program shift: As an
alternative to the definition of a time
span of operation also a maximum
shifting (or just separation of the device
from power) can be defined.

Time yes
maxShiftTim
e

-

Management mode:

operate within time span defined by
startTime and endTime
operate by maximum program shift

Enumerated yes endTime -

Priority (in case of emergency programs
may not be processed in the time span
defined before, but the programs will be
processed based on priority levels,
priority level 0 will be processed first)

Integer yes priority -

Maximum price: In case the program
cannot be processed in the time span
specified before for the maximum price
or lower, it shall be shifted to another
time.

Analogue yes endTime currency

In-house architecture and interface description

38/66

4. Development of an Open Standard and Reference Implementation for In-
House Services
In order to define and develop a standard for the in-house services described above, Fraunhofer IWES has
started the Open Gateway for Energy Management Alliance in September 2009. The scope of this Alliance is
to provide an open software framework for energy management in the building sector, including private
buildings and households. This framework is to be run on a central building gateway which serves as
interface between the Smart House and the Smart Grid, integrating as many applications in the area of
energy management and energy efficiency as possible. The development of a reference implementation for
this framework is also goal of OGEMA and is currently ongoing as part of IWES SmartHouse/SmartGrid
activity. The field test B within project SmartHouse/SmartGrid will in fact be the first test of the newly
developed framework in real-field at customer’s premises.

An overview of the frameworks internal organization has already been given in chapter 2.1. It has become
apparent that a very important aspect of this framework is its openness both in terms of software
development as well as manufacturer independency. For the software development, both the OGEMA
specification as well as the reference implementation will be provided as open source and be made freely
downloadable. In this way, developers who are not members of the alliance can also contribute on new
applications or communication system drivers. This can be compared with the open source paradigm of, for
example, the Firefox web browser or the Linux operating system. Software developers again will be
supported by the possibility to use the framework’s open interfaces. This allows, for example, for
programming a new web interface for device management without deep knowledge of the hardware driver
design for device control. Again, this is similar to the functionality of an operating system which offers
specified interfaces for device access to the application layer.

Open source operating

system (e.g. Linux)
OGEMA for energy

management

loads

KW K-Daten
2,3 kW

System OK

user
display

co-generation

smart meter

fridge app

emergency
power redcution

resource admin
loadsloads

KW K-Daten
2,3 kW

System OK

user
display

KW K-Daten
2,3 kW

System OK

KW K-Daten
2,3 kW

System OK

user
display

co-generationco-generation

smart metersmart meter

fridge appfridge app

emergency
power redcution

emergency
power redcution

resource adminresource admin

Figure 10: Comparison between open source operating system and OGEMA software framework

The open-source and open specification approach also ensures manufacturer independency, since different
applications from various manufacturers will be able to run on the framework as long as each application is
complying with the specification interfaces. Therefore, even manufacturers who are not alliance members
can program applications. This shall allow a multitude of applications („apps“) to be developed within a
short period of time. These apps shall cover the differing requirements from private households, super
markets, small businesses up to public institutions such as schools and hospitals and help to tap potentials
for energy efficiency not accessed today. However, at least in the starting phase of the alliance it will be
recommended to application designers and manufacturers to become alliance members. This way, they will
be able to influence the further development of the specification and take part in discussions on new

In-house architecture and interface description

39/66

specification requirements, to receive early information on specification draft documents, to access support
from an OGEMA contact office, to list own products on the alliance’s web site and to benefit from
moderation by Fraunhofer IWES for the advance of the OGEMA specification with the goal of a maximum
wide usage for a sustainable energy supply while offering a maximum of neutrality.

The OGEMA framework’s main features are summarized as follows:

OGEMA uses well-known widely-accepted software standards for its execution environment that
are available as open source and as commercial products. For example, the current reference
implementation is based on Java and OSGi.

OGEMA allows for applications to be developed not knowing how devices are connected to the
system and communication drivers can be developed independently from the application that uses
the driver. Data Models defined by the OGEMA specification act as an intermediary layer allowing
both applications and drivers to be developed against an interface definition that is independent
from the actual hardware communication connections and from the actual applications deployed.

Representation of devices and common services by extensible data models. The OGEMA framework
provides a fixed number of services needed to register/unregister device types, actual devices,
applications and communication drivers. Also services for the Plug&Play-functionality, for
application runtime control, for logging and for getting information on components registered,
methods for reading and writing device data are included. New device types can be installed
dynamically by providing appropriate Java classes containing new data structures to the framework.

Open interface for software applications and hardware/communication drivers. The entire API of
the OGEMA framework including interfaces for software applications and communication drivers
as well as sample code will be made public on the OGEMA web site.

Support for various in-house communication systems. By defining a common interface layer for ICT
used in-house, the “communication system”, OGEMA provides a basis for including market-
available technologies such as ZigBee, Z-Wave or KNX into the energy management system. This
also allows OGEMA applications to integrate or interact with building automation systems.

Plug&Play support: the OGEMA framework provides methods for minimizing installation effort for
the inclusion of new devices into the energy management. The OGEMA interface for communication
drivers allows for various communication concepts and levels of auto-detection of devices. This
ranges from the completely automatic device discovery to user interaction for providing the needed
installation information to the framework (e.g. the information that a newly connected temperature
sensor is situated in the bathroom, where temperature is configured to be highest in the mornings
and evenings).

“Firewall” between public grid and customer grid: the gateway acts as a firewall between the public
and the private communication systems allowing only the interaction between the systems as
defined by the gateway configuration.

Resource control based on user-specific access rights and permissions. OGEMA user accounts on the
gateway grant specific device access and applications permissions.

Web-based Man-Machine Interface support. OGEMA uses standard web technology to implement
the user interface. So the user can access the interface by any web-enabled device with an internet
browser. Applications can bring their own web pages using HTML and JSP (Java Server Pages for
dynamic page content).

The first version of the specification and reference implementation shall be made ready for download at the
OGEMA webpage www.ogema-alliance.org in early 2010. Also, updated information about the alliance’s
progress will be published there. A technical documentation of the reference implementation is also part of
the SmartHouse/SmartGrid deliverable D2.3.

http://www.ogema-alliance.org/

In-house architecture and interface description

40/66

Annex: Detailed Description of In-House Services

1. Services of the Resource Administration

1.1. Management of Resource Types

Aspect Specification

Service name addResourceType

Location of service ResourceAdministrationService

Service functionality Add Resource Type to the framework

Service input / output Input: Resource Type Description
Output: (Resource Type Reference if not the same as
resource type name)

Service users - Administration interface
- Applications that require specific type(s)

Expected frequency of use Frequently during setup of framework
otherwise: < 1x / day

Related use cases all

Aspect Specification

Service name deleteResourceType

Location of service ResourceAdministrationService

Service functionality Delete Resource Type from the framework

Service input / output Input: Resource Type Reference
Output: -

Service users - Administration interface
- Applications that require specific type(s)

Expected frequency of use infrequently

Related use cases all (upon uninstall)

Aspect Specification

Service name getResourceTypesInstalled

Location of service ResourceAdministrationService

Service functionality Get all resource types available on the framework

Service input / output Input: -
Output: List of all resource types (array of String)

In-house architecture and interface description

41/66

Service users - Administration interface
- Applications that require specific type(s)

Expected frequency of use infrequently

Related use cases Administration
Using manufacturer specific functionality

Aspect Specification

Service name getTypeDescription

Location of service ResourceAdministrationService

Service functionality Get description of Resource Type

Service input / output Input: Resource Type Reference
Output: Resource Type description

Service users - Administration interface
- Applications that require specific type(s)

Expected frequency of use infrequently

Related use cases Administration
Using manufacturer specific functionality

1.2. Management of Resources

Aspect Specification

Service name addResource

Location of service ResourceAdministrationService

Service functionality Add Resource representation

Service input / output Input: Resource Type Reference, name of new top-level
resource
Output: Resource Reference

Service users - Administration interface
- Communications Systems importing new resources
- Applications installing new devices

Expected frequency of use Frequently during setup of framework
otherwise: < 1x / day

Related use cases all

Aspect Specification

Service name deleteResource

Location of service ResourceAdministrationService

In-house architecture and interface description

42/66

Service functionality Delete Resource representation from the framework

Service input / output Input: Resource Reference
Output: -

Service users - Administration interface
- Communication Systems detecting devices that are
removed

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name addResourceAdditionalType

Location of service ResourceAdministrationService

Service functionality Add an optional sub-resource to an existing resource

Service input / output Input: Parent of new sub-resource (Resource Reference),
Resource Type Reference (must refer to an “Additional
Resource Type”)
Output: Resource Reference

Service users - Administration interface
- Applications installing new devices)

Expected frequency of use infrequently

Related use cases Using manufacturer specific functionality

Aspect Specification

Service name getResourceName

Location of service ResourceAdministrationService

Service functionality Get name of Resource based on its reference

Service input / output Input: Resource reference
Output: Name (String)

Service users - Administration interface
- User interface

Expected frequency of use Depending on user interface usage

Related use cases all

Aspect Specification

Service name getResourceType

Location of service ResourceAdministrationService

In-house architecture and interface description

43/66

Service functionality Get type of a resource

Service input / output Input: Resource reference
Output: Resource Type reference

Service users - Administration interface
- User interface
- Applications searching for resource types using
wildcards

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name getSuperResourceId

Location of service ResourceAdministrationService

Service functionality Get parent of a resource

Service input / output Input: Resource Type Reference
Output: Parent of Input (Resource Type Reference), error
if input was top-level resource

Service users - Administration interface
- Applications that can use various resource types based
on a specific sub-resource element

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name getAttributeId

Location of service ResourceAdministrationService

Service functionality Get reference to a sub-resource based on its name, which
is defined by the Resource Type description

Service input / output Input: Resource Reference, name of sub-resource (String)
Output: Resource Reference of sub-resource

Service users - Administration interface
- Applications

Expected frequency of use Frequently during setup of framework
otherwise: < 1x / day

Related use cases all

In-house architecture and interface description

44/66

Aspect Specification

Service name getToplevelResourceId

Location of service ResourceAdministrationService

Service functionality Get device or other top-level resource by its name or by a
Reference of a sub-resource

Service input / output Input: Device name (String) or resource Reference
Output: Resource Reference of top-level resource

Service users - User Interface
- Applications that can use various resource types based
on a specific sub-resource element (e.g. a temperature
storage that might be found in various devices)

Expected frequency of use infrequently

Related use cases all

1.3. Search for Resources

Aspect Specification

Service name getResourcesIds

Location of service ResourceAdministrationService

Service functionality Get all resources that fit one of the Resource Types given
(should also support wild cards like ‘*’ and ‘?’)

Service input / output Input: List of Resource Type names
Output: List of Resource References

Service users - Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name getChildResourcesIds

Location of service ResourceAdministrationService

Service functionality Get all sub-resources of a resource

Service input / output Input: Resource Type Reference
Output: Sub-resources of input (List of Resource Type
References), empty if input is a basic type resource

Service users - Administration interface
- Applications using optional sub-resources

Expected frequency of use infrequently

Related use cases Administration
Using manufacturer specific functionality

In-house architecture and interface description

45/66

1.4. Read / Write of Resources

Aspect Specification

Service name setResourceElementBoolean

Location of service ResourceAdministrationService

Service functionality Write into resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Boolean), Value to write
Output: -

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name setResourceElementInteger

Location of service ResourceAdministrationService

Service functionality Write into resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Integer), Value to write
Output: -

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name setResourceElementAnalogue

Location of service ResourceAdministrationService

Service functionality Write into resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Analogue), Value to write
Output: -

Service users - User interface
- Applications
- Communication Systems

In-house architecture and interface description

46/66

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name setResourceElementString

Location of service ResourceAdministrationService

Service functionality Write into resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type String), Value to write
Output: -

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name setResourceElementTime

Location of service ResourceAdministrationService

Service functionality Write into resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Time), Value to write
Output: -

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name getResourceElementBoolean

Location of service ResourceAdministrationService

Service functionality Read from resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Boolean)
Output: Value of resource

Service users - User interface

In-house architecture and interface description

47/66

- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name getResourceElementInteger

Location of service ResourceAdministrationService

Service functionality Read from resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Integer)
Output: Value of resource

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name getResourceElementAnalogue

Location of service ResourceAdministrationService

Service functionality Read from resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Analogue)
Output: Value of resource

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name getResourceElementString

Location of service ResourceAdministrationService

Service functionality Read from resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type String)

In-house architecture and interface description

48/66

Output: Value of resource

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

Aspect Specification

Service name getResourceElementTime

Location of service ResourceAdministrationService

Service functionality Read from resource of basic type

Service input / output Input: Resource Type Reference (must refer to resource
of simple type Time)
Output: Value of resource

Service users - User interface
- Applications
- Communication Systems

Expected frequency of use Frequently

Related use cases all

1.5. Management of Communication Systems

Aspect Specification

Service name registerCommunicationSystem

Location of service ResourceAdministrationService

Service functionality Register communication system that has been installed
on the system

Service input / output Input: Communication System Reference
Output: -

Service users - Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name unregisterCommunicationSystem

Location of service ResourceAdministrationService

Service functionality Release communication system

In-house architecture and interface description

49/66

Service input / output Input: Communication System Reference
Output: -

Service users - Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name getCommunicationSystems

Location of service ResourceAdministrationService

Service functionality Get a list of all communication systems registered

Service input / output Input: -
Output: List of references to communication systems

Service users - Administration interface
- Applications that perform binding of resources to
communication connections

Expected frequency of use infrequently

Related use cases all

1.6. Management of Resource Demand of Applications

Aspect Specification

Service name registerResourceDemand

Location of service ResourceAdministrationService

Service functionality Register resource demand (see Main Component
Specification)

Service input / output Input: Description of resource demand (by type as in
getResources, by resource name or by resource
reference), resource demand reference, connection type
(notification on status only, read, read/write), priority,
name of resource demand, Callback Reference for
notification informed of new resources fitting a demand,
changes of the demand fulfilment and changes of the
values of the resources that are assigned to an
application
Output: -

Service users - Applications

Expected frequency of use Frequently during setup of applications
otherwise: < 1x / day

Related use cases all

In-house architecture and interface description

50/66

Aspect Specification

Service name registerSecondaryDemand

Location of service ResourceAdministrationService

Service functionality Register demand for an additional resource that is
required for using a primary resource the application get
access because it fits a demand. This can be used e.g.
when access to a switch is required together with access
to a sensor.
A secondary demand must always point to a dedicated
resource, no to a type. The secondary resource will be
released as soon as the primary resource is released. If
the secondary resource loses the lock also the primary
resource will be released.

Service input / output Input: Resource Demand Description as in register
resource demand, reference to primary resource demand
Output: -

Service users - Applications

Expected frequency of use Frequently during setup of framework
otherwise: < 1x / day

Related use cases all

2. Persistent Storage

2.1. Preferences

Aspect Specification

Service name createPreferencesSet

Location of service Preferences

Service functionality Open set of preferences/parameters for an application.
Create the set if it does not exist yet.

Service input / output Input: Preferences Set Name
Output: Preferences Set Reference

Service users - Applications

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name deletePreferencesSet

Location of service Preferences

In-house architecture and interface description

51/66

Service functionality Delete set of preferences/parameters for an application

Service input / output Input: Preferences Set Name
Output: -

Service users - Applications

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name getInt

Location of service Preferences

Service functionality Read Integer from set of preferences, return standard
value if it does not exist

Service input / output Input: Preferences Set Reference, preference value name,
standard value (Integer)
Output: Value read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name getIntArray

Location of service Preferences

Service functionality Read array of Integers from set of preferences, return
array with standard length consisting only of standard
values if it does not exist

Service input / output Input: Preferences Set Reference, preference value name,
standard value (Integer), length of standard array
Output: Array read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name getFloat

Location of service Preferences

Service functionality Read Analogue from set of preferences, return standard
value if it does not exist

In-house architecture and interface description

52/66

Service input / output Input: Preferences Set Reference, preference value name,
standard value (Float)
Output: Value read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name getFloatArray

Location of service Preferences

Service functionality Read array of Floats from set of preferences, return array
with standard length consisting only of standard values
if it does not exist

Service input / output Input: Preferences Set Reference, preference value name,
standard value (Float), length of standard array (Integer)
Output: Array read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name getString

Location of service Preferences

Service functionality Read String from set of preferences, return standard
value if it does not exist

Service input / output Input: Preferences Set Reference, preference value name,
standard value (String)
Output: Value read

Service users - Applications

Expected frequency of use Frequently

Related use cases All

Aspect Specification

Service name getStringArray

Location of service Preferences

Service functionality Read array of Strings from set of preferences, return
array with standard length consisting only of standard
values if it does not exist

In-house architecture and interface description

53/66

Service input / output Input: Preferences Set Reference, preference value name,
standard value (String), length of standard array
(Integer)
Output: Array read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name getTime

Location of service Preferences

Service functionality Read Time-value from set of preferences, return standard
value if it does not exist

Service input / output Input: Preferences Set Reference, preference value name,
standard value (Time)
Output: Value read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name getTimeArray

Location of service Preferences

Service functionality Read array of Time values from set of preferences, return
array with standard length consisting only of standard
values if it does not exist

Service input / output Input: Preferences Set Reference, preference value name,
standard value (Time), length of standard array (Integer)
Output: Array read

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name setInt

Location of service Preferences

Service functionality Write Integer into set of preferences, create value if it
does not exist yet

In-house architecture and interface description

54/66

Service input / output Input: Preferences Set Reference, preference value name
Output: Value to write

Service users - Applications

Expected frequency of use frequently

Related use cases All

Aspect Specification

Service name setIntArray

Location of service Preferences

Service functionality Write array of Integers into set of preferences, create it if
it does not exist

Service input / output Input: Preferences Set Reference, preference value name
Output: Array to write

Service users - Applications

Expected frequency of use frequently

Related use cases All

Aspect Specification

Service name setFloat

Location of service Preferences

Service functionality Write Analogue into set of preferences, create value if it
does not exist yet

Service input / output Input: Preferences Set Reference, preference value name
Output: Value to write

Service users - Applications

Expected frequency of use frequently

Related use cases All

Aspect Specification

Service name setFloatArray

Location of service Preferences

Service functionality Write array of Analogues into set of preferences, create it
if it does not exist

Service input / output Input: Preferences Set Reference, preference value name
Output: Array to write

Service users - Applications

Expected frequency of use frequently

In-house architecture and interface description

55/66

Related use cases all

Aspect Specification

Service name setString

Location of service Preferences

Service functionality Write String into set of preferences, create value if it does
not exist yet

Service input / output Input: Preferences Set Reference, preference value name
Output: Value to write

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name setStringArray

Location of service Preferences

Service functionality Write array of Strings into set of preferences, create it if it
does not exist

Service input / output Input: Preferences Set Reference, preference value name
Output: Array to write

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name setTime

Location of service Preferences

Service functionality Write Time value into set of preferences, create value if it
does not exist yet

Service input / output Input: Preferences Set Reference, preference value name
Output: Value to write

Service users - Applications

Expected frequency of use frequently

Related use cases all

Aspect Specification

In-house architecture and interface description

56/66

Service name setTimeArray

Location of service Preferences

Service functionality Write array of Time values into set of preferences, create
it if it does not exist

Service input / output Input: Preferences Set Reference, preference value name
Output: Array to write

Service users - Applications

Expected frequency of use frequently

Related use cases all

2.2. Schedules

Aspect Specification

Service name createScheduleSeries

Location of service dbScheduleService

Service functionality Create schedule series in persistent storage

Service input / output Input: Schedule Series Definition
Output: Schedule Series Reference (if not the same as
name)

Service users - Administration interface
- Applications using own schedules
- Communication Systems importing schedules

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name deleteScheduleSeries

Location of service dbScheduleService

Service functionality Delete schedule series from persistent storage

Service input / output Input: Schedule Series Reference
Output: -

Service users - Administration interface

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

In-house architecture and interface description

57/66

Aspect Specification

Service name getScheduleSeriesDefintion

Location of service dbScheduleService

Service functionality Check whether Schedule Series Reference exists and read
it

Service input / output Input: Schedule Series Reference
Output: Schedule Series Defintion

Service users - Administration interface

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name addScheduleFixedStep

Location of service dbScheduleService

Service functionality Add new schedule information into a Schedule Series;
overwrites existing schedule information for the same
period of time

Service input / output Input: Single Schedule (including information of
Schedule Series Reference)
Output: -

Service users - Applications
- Communication Systems

Expected frequency of use a few times per day (may be much more frequently in
some cases, e.g. emergencies)

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name getScheduleFixedStep

Location of service dbScheduleService

Service functionality Get schedule information for scheduling interval
containing start time

Service input / output Input: Schedule Series Reference, start time of scheduling
period (Time)
Output: Single Schedule

Service users - Applications
- Communication Systems

Expected frequency of use a few times per day (may be much more frequently in

In-house architecture and interface description

58/66

some cases, e.g. emergencies)

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name getValueFromSchedule

Location of service dbScheduleService

Service functionality Get single value from all schedule information in a
Schedule Series for a certain time

Service input / output Input: Schedule Series Reference, time
Output: value (Analogue)

Service users - Administration interface
- Applications using own schedules
- Communication Systems importing schedules

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

2.3. Time Series

Aspect Specification

Service name openTimeSeriesSet

Location of service dbTimeSeriesService

Service functionality Open or create Time Series Set. In case the time series set
already exists, the existing time series shall be opened
using the new configuration otherwise a new time series
set shall be created. Each time series can only be opened
by a single application at a time.

Service input / output Input: Time Series Set name, Time Series Set Definition
Output: Time Series Set Reference

Service users - Logging and evaluation

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name closeTimeSeriesSet

Location of service dbTimeSeriesService

In-house architecture and interface description

59/66

Aspect Specification

Service functionality Close Time Series Set. The Time Series Set is then
available to be opened by another application.

Service input / output Input: Time Series Set name
Output: -

Service users - Logging and evaluation

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name getTimeSeriesSetDefinition

Location of service dbTimeSeriesService

Service functionality Get Time Series Set Definitoin

Service input / output Input: Time Series Set name
Output: Time Series Set Definition

Service users - Logging and evaluation

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name deleteTimeSeriesSet

Location of service dbTimeSeriesService

Service functionality Delete Time Series Set

Service input / output Input: Time Series Set name
Output: Time -

Service users - Logging and evaluation

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name addTimeSeriesData

Location of service dbTimeSeriesService

Service functionality Add one set of data consisting of one time stamp and one

In-house architecture and interface description

60/66

Aspect Specification

value for each time series. The time stamp must be later
then the time stamp written previously, so no data that
was written before can be changed using this service (use
writeTimeSeriesValue... instead). In case the
TimeSeriesSet specifies a reduction mode, the reduction
will be processed by this service.

Service input / output Input: Time Series Set Reference, Time stamp, new
values (array of Analogues)
Output: -

Service users - Logging and evaluation

Expected frequency of use frequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name writeTimeSeriesValue

Location of service dbTimeSeriesService

Service functionality Write into existing data of a time series. It is not possible
to add any time stamps by this function, but existing
data is overwritten. Usually the closest time stamp
available should be used. If the time is outside the range
of the time series, however, an error should be returned.

Service input / output Input: Time Series Set Reference, Time stamp, name of
time series, new value (Analogue)
Output: -

Service users - Logging and evaluation

Expected frequency of use frequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name readTimeSeriesRange

Location of service dbTimeSeriesService

Service functionality Read all data series from one time series set in a certain
time range based on the name of the time series (reading
unsynchronized with writing)

Service input / output Input: Time Series Set name, start time, end time, names
of time series to read (array of Strings), maximum
number of values to read per time series (Integer)
Output: Map of time series names and Arrays of the

In-house architecture and interface description

61/66

Aspect Specification

values in the range. Also an array of time stamps is
returned.

Service users - Logging and evaluation

Expected frequency of use frequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name readTimeSeriesRangeAligned

Location of service dbTimeSeriesService

Service functionality Read in a certain time range from several time series
being part of one or more time series sets and align the
data.

Service input / output Input: Array of Time Series Set Requests (consisting of
the input variables as defined in readTimeSeriesRange
except for start and end time), start time, end time, mode
of alignment (fixed step, as many time stamps as make
sense, use first time series set to define common time
stamps) (Enumerated), in case of fixed step: step size
(Time)
Output: Map of time series names and Arrays of the
values in the range. Also an array of time stamps is
returned.

Service users - Logging and evaluation

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name commitToDiskConfig

Location of service dbTimeSeriesService

Service functionality Configure how often data shall be written to persistant
storage (in case system supports buffering of data in
RAM) or initiate immediate writing

Service input / output Input: Only write to persistent storage when
commitNewOperationsToDisk(true) is called / perform
regular writing to persistent storage every <interval>
seconds (if any operations pending) (Enumerated), time
between two automated writings to persistent storage (0:
do not allow buffering) (Time)

In-house architecture and interface description

62/66

Output: -

Service users - Administration interface
- Applications

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

Aspect Specification

Service name commitNewOperationsToDisk

Location of service dbTimeSeriesService

Service functionality Enable/disable RAM buffering of data for persistent
storage

Service input / output Input: Boolean (true: write all data buffered in RAM into
persistent storage and do not allow for any more
buffering until service is called again to switch to false).
While buffering is disabled the configuration set by
commitToDiskConfig are not relevant.
Output: number of write operations currently buffered
(Integer)

Service users - Administration interface
- Applications

Expected frequency of use infrequently

Related use cases e.g. management using price / device operation
schedules

3. Communication System
In case a resource represents not a hardware device, the term "hardware" in the following service
descriptions stands for the remote data base, e.g. for the system providing electricity prices.

Aspect Specification

Service name getName

Location of service CommunicationSystem

Service functionality Get name of communication system

Service input / output Input: -
Output: Name (String)

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases All

In-house architecture and interface description

63/66

Aspect Specification

Service name getMinimalTimeStep

Location of service CommunicationSystem

Service functionality Get minimal time between readings of a potential new
sensor

Service input / output Input: -
Output: Minimal time step (Time)

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name isMinimalTimeStepVariable

Location of service CommunicationSystem

Service functionality Determine whether the result of getMinimalTimeStep
may change e.g. when additional sensors are added or
when the quality of a radio connection changes

Service input / output Input: -
Output: Boolean

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name setStandardTimeStep

Location of service CommunicationSystem

Service functionality Set standard time step that will be used for sensors
connected by the communication system

Service input / output Input: Time
Output: -

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

In-house architecture and interface description

64/66

Aspect Specification

Service name getStandardTimeStep

Location of service CommunicationSystem

Service functionality Get standard time step

Service input / output Input: -
Output: Time

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name getConfigurationData

Location of service CommunicationSystem

Service functionality Get reference to internal configuration data of
communication system. In general this will be a data
structure specific to the communication system.

Service input / output Input: -
Output: Reference to internal configuration data of
communication system

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name configurationUpdated

Location of service CommunicationSystem

Service functionality The service should be called when the configuration data
(previously provided as reference by
getConfigurationData) has been changed.

Service input / output Input: -
Output: -

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

In-house architecture and interface description

65/66

Aspect Specification

Service name checkAddress

Location of service CommunicationSystem

Service functionality Check if address is valid for communication system

Service input / output Input: Address (String)
Output: Enumerated (address ok; format valid, but
address not reachable; format invalid)

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

Aspect Specification

Service name connectResourceToAddress

Location of service CommunicationSystem

Service functionality Link an internal resource to a remote value that is
identified by an address. This can be used if the
ComSystem has not identified the value to be accessible
e.g. because the ComSystem has no auto-detect
functionality

Service input / output Input:
- Address (String)
- Reference to resource to connect to
- pollType (Enumerated):

- 1: The ComSystem is responsible for writing into
the resource according to the cycle specified or
must check itself; whether a value to send to the
hardware has been changed for reading

- 2: The service updateConnValue is called each
time a communication to the hardware shall take
place

- 3: server mode / no polling
- Enumerated(hardware to resource (read from
hardware); resource to hardware (write to hardware);
both directions)
- Time between update of value (Time) (only relevant for
pollType=1; if zero use standard step time)
Output: ComConnectionRef

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

In-house architecture and interface description

66/66

Aspect Specification

Service name updateConnValue

Location of service CommunicationSystem

Service functionality Notify the communication system that it needs to update
a resource or send some new value to the hardware

Service input / output Input: ComConnectionRef
Output: -

Service users - Resource administration

Expected frequency of use frequently

Related use cases all

Aspect Specification

Service name UnbindResource

Location of service CommunicationSystem

Service functionality Close link of external and internal data

Service input / output Input: ComConnectionRef
Output: -

Service users - User interface
- Administration interface

Expected frequency of use infrequently

Related use cases all

